Fabian Hadiji

Lehrstuhl für Künstliche Intelligenz, TU Dortmund

DSDay7, Berlin, October 30, 2014

Joint work with Kristian Kersting

Desirable Properties:

Should be widely applicable!

- Should be widely applicable!
- Should scale well!

- Should be widely applicable!
- Should scale well!
- Should have theoretic guarantees!

- Should be widely applicable!
- Should scale well!
- Should have theoretic guarantees!
- Should need only a few lines of code!

Desirable Properties:

- Should be widely applicable!
- Should scale well!
- Should have theoretic guarantees!
- Should need only a few lines of code!

Label Propagation

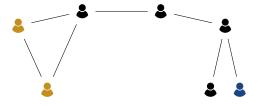
[Zhu and Ghahramani, 2002, Zhu et al., 2003]

Set of nodes

- Set of nodes
- Set of known labels

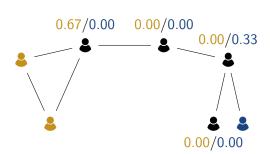
- Set of nodes
- Set of known labels
- Similarity function

• e.g.
$$\exp\left(-\sum_d \frac{(x_{id}-x_{jd})^2}{\sigma_d^2}\right)$$



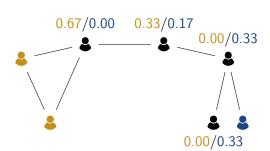
- Set of nodes
- Set of known labels
- Similarity function

$$\blacksquare$$
 e.g. $\exp\left(-\sum_{d} \frac{(x_{id}-x_{jd})^2}{\sigma_d^2}\right)$



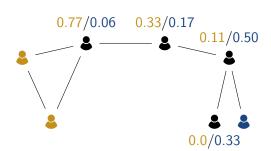
- Set of nodes
- Set of known labels
- Similarity function

• e.g.
$$\exp\left(-\sum_{d} \frac{(x_{id}-x_{jd})^2}{\sigma_d^2}\right)$$



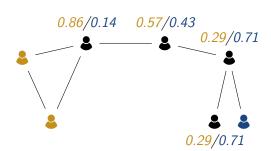
- Set of nodes
- Set of known labels
- Similarity function

• e.g.
$$\exp\left(-\sum_{d} \frac{(x_{id}-x_{jd})^2}{\sigma_d^2}\right)$$



- Set of nodes
- Set of known labels
- Similarity function

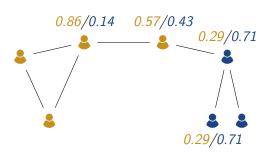
• e.g.
$$\exp\left(-\sum_{d} \frac{(x_{id}-x_{jd})^2}{\sigma_d^2}\right)$$



- Set of nodes
- Set of known labels
- Similarity function

• e.g.
$$\exp\left(-\sum_{d} \frac{(x_{id}-x_{jd})^2}{\sigma_d^2}\right)$$

- Iteratively propagate labels
- Read off labels



Python Code

```
# W is similarity matrix
# Y is label matrix
W = preprocess(W, Y)
Y_old = Y.copy()
iters = 0
while True:
    Y = W * Y
    max_diff = np.abs(Y-Y_old).max()
    iters += 1
    if max_diff < th:</pre>
        break
    Y_old = Y.copy()
```

DBLP enriched with geo-locations

 \blacksquare DBLP¹ is a bibliography database with $\approx 1.5 M$ authors and $\approx 2.8 M$ papers

¹http://dblp.uni-trier.de/

- \blacksquare DBLP¹ is a bibliography database with $\approx 1.5 M$ authors and $\approx 2.8 M$ papers
- Unfortunately, DBLP does not contain affiliations/geo-locations

¹http://dblp.uni-trier.de/

- DBLP¹ is a bibliography database with \approx 1.5M authors and \approx 2.8M papers
- Unfortunately, DBLP does not contain affiliations/geo-locations
- Obtaining seed affiliations/geo-locations is possible but challenging

¹http://dblp.uni-trier.de/

- DBLP¹ is a bibliography database with \approx 1.5M authors and \approx 2.8M papers
- Unfortunately, DBLP does not contain affiliations/geo-locations
- Obtaining seed affiliations/geo-locations is possible but challenging
- Application: label \approx 5 million author-paper-pairs form DBLP with one of \approx 4.5 thousand cities

¹http://dblp.uni-trier.de/

- DBLP¹ is a bibliography database with \approx 1.5M authors and \approx 2.8M papers
- Unfortunately, DBLP does not contain affiliations/geo-locations
- Obtaining seed affiliations/geo-locations is possible but challenging
- Application: label \approx 5 million author-paper-pairs form DBLP with one of \approx 4.5 thousand cities

$$W \cdot Y = \underbrace{\begin{pmatrix} w_{11} & \dots & w_{1n} \\ \vdots & \ddots & \vdots \\ w_{n1} & \dots & w_{nn} \end{pmatrix}}_{5M \times 5M} \cdot \underbrace{\begin{pmatrix} y_{11} & \dots & y_{1k} \\ \vdots & \ddots & \vdots \\ y_{n1} & \dots & y_{nk} \end{pmatrix}}_{5M \times 4.5k}$$

¹http://dblp.uni-trier.de/

Large-scale Label Propagation

- **Problem**: Impossible to store dense affinity matrix in RAM.
- **Solution**: Use similarity function based on relational formulas [Hadiji et al., 2013]. E.g.:

$$w_{ij} += \lambda_d$$
 if $author(i) = author(j) \land year(i) = year(j)$

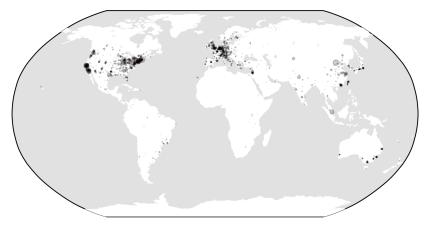
Large-scale Label Propagation

- **Problem**: Impossible to store dense affinity matrix in RAM.
- **Solution**: Use similarity function based on relational formulas [Hadiji et al., 2013]. E.g.:

$$w_{ij} += \lambda_d$$
 if $author(i) = author(j) \land year(i) = year(j)$

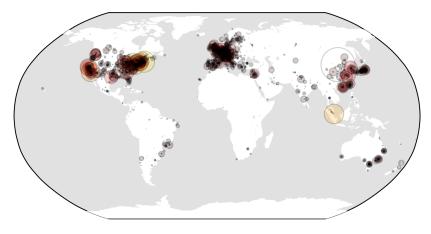
- Problem: LP often suffers from slow convergence
- Solution: Bootstrapping to speed up convergence [Hadiji and Kersting, 2013]

Propagated Data



Initial Data

Propagated Data

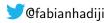


Completed Data

Thank You

Questions?

www.hadiji.com



References I

Hadiji, F. and Kersting, K. (2013).

Reduce and re-lift: Bootstrapped lifted likelihood maximization for map.

In AAAI.

Hadiji, F., Kersting, K., Bauckhage, C., and Ahmadi, B. (2013).

Geodblp: Geo-tagging dblp for mining the sociology of computer science.

arXiv preprint arXiv:1304.7984.

Zhu, X. and Ghahramani, Z. (2002).

Learning from labeled and unlabeled data with label propagation.

Technical report, Technical Report CMU-CALD-02-107, Carnegie Mellon University.

References II

Zhu, X., Ghahramani, Z., and Lafferty, J. (2003).

Semi-supervised learning using gaussian fields and harmonic functions.

In ICML, volume 3, pages 912-919.