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Label Propagation

[Zhu and Ghahramani, 2002, Zhu et al., 2003]
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Label Propagation — Intuition

= Set of nodes 0.67/0.00  0.00/0.00
= Set of known labels J QY 0.00/0.33
= Similarity function s T -3
e.g. exp (7 Sy (x;d;gjd)Q) \ / \
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Label Propagation — Intuition

= Set of nodes 0.86/0.14  0.57/0.43
» Set of known labels & — ¢ 0.29/0.71
= Similarity function s T -3
e.g. exp (_ Sy (Xid;;jd)z) \ / \
m lteratively propagate
labels ) e &

= Read off labels 0.29/0.71




Python Code

# W is similarity matrizc
# Y i9s label matriz
W = preprocess (W, Y)
Y_old = Y.copy()
iters = 0
while True:

Y = W x Y

max_diff = np.abs(Y-Y_old).max()
iters += 1
if max_diff < th:
break
Y_old = Y.copy (O
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Large-scale Label Propagation

Problem: Impossible to store dense affinity matrix in RAM.

Solution: Use similarity function based on relational
formulas [Hadiji et al., 2013]. E.g.:

wjj+= Mg if author (/) = author(j) A year (i) = year(j)



Large-scale Label Propagation

Problem: Impossible to store dense affinity matrix in RAM.

Solution: Use similarity function based on relational
formulas [Hadiji et al., 2013]. E.g.:

wjj+= Mg if author (/) = author(j) A year (i) = year(j)

Problem: LP often suffers from slow convergence

Solution: Bootstrapping to speed up
convergence [Hadiji and Kersting, 2013]
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Thank You

Questions ?

www.hadiji.com | W¥@fabianhadiji



www.hadiji.com

References |

8 Hadiji, F. and Kersting, K. (2013).

Reduce and re-lift: Bootstrapped lifted likelihood maximization for
map.
In AAAI.

[d Hadiji, F., Kersting, K., Bauckhage, C., and Ahmadi, B. (2013).

Geodblp: Geo-tagging dblp for mining the sociology of computer
science.

arXiv preprint arXiv:1304.7984.

[d Zhu, X. and Ghahramani, Z. (2002).
Learning from labeled and unlabeled data with label propagation.

Technical report, Technical Report CMU-CALD-02-107, Carnegie
Mellon University.




References |l

[4 Zhu, X., Ghahramani, Z., and Lafferty, J. (2003).

Semi-supervised learning using gaussian fields and harmonic
functions.

In ICML, volume 3, pages 912-919.




